diff --git a/main.py b/main.py
index 1c5d563..87bfedb 100644
--- a/main.py
+++ b/main.py
@@ -308,6 +308,71 @@ def enhance_image3(image: bytes) -> bytes:
     return enhanced_webp.tobytes()
 
 
+def enhance_image4(image: bytes) -> bytes:  # noqa: PLR0914
+    """Enhance an image using a simplified Multi-Scale Retinex with Color Restoration (MSRCR) algorithm to better reveal details in dark areas.
+
+    This approach first denoises the image, then applies multi-scale retinex processing to
+    boost local contrast. A color restoration step helps maintain a natural look.
+
+    Args:
+        image (bytes): The input image to enhance.
+
+    Returns:
+        bytes: The enhanced image encoded in WebP format.
+    """  # noqa: E501
+    # Decode the image from bytes
+    nparr = np.frombuffer(image, np.uint8)
+    img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
+
+    # Denoise the image with conservative settings
+    img = cv2.fastNlMeansDenoisingColored(img, None, 5, 5, 7, 21)
+
+    # Convert to float64 and add 1 to avoid log(0)
+    img = img.astype(np.float64) + 1.0
+
+    # Define scales for the multi-scale retinex (you can experiment with these)
+    scales = [15, 80, 250]
+    retinex = np.zeros_like(img)
+
+    # Compute the retinex output over different scales
+    for sigma in scales:
+        # Gaussian blur with standard deviation sigma; kernel size is computed automatically
+        blur = cv2.GaussianBlur(img, (0, 0), sigma)
+        retinex += np.log(img) - np.log(blur)
+
+    # Average the retinex result over all scales
+    retinex /= len(scales)
+
+    # --- Color Restoration Step ---
+    # Compute the sum across color channels (with a small epsilon to avoid division by zero)
+    eps = 1e-6
+    sum_channels = np.sum(img, axis=2, keepdims=True) + eps
+
+    # The color restoration factor; alpha is chosen empirically (here 125 works well in many cases)
+    color_restoration = np.log(125 * img / sum_channels + 1)
+
+    # Combine the retinex output with the color restoration factor
+    msrcr = retinex * color_restoration
+
+    # Apply gain and offset adjustments to fine-tune brightness and contrast
+    gain = 1.5
+    offset = 20
+    msrcr = msrcr * gain + offset
+
+    # Normalize each channel to span the full 0-255 range
+    for channel in range(3):
+        ch_data = msrcr[:, :, channel]
+        ch_min, ch_max = ch_data.min(), ch_data.max()
+        msrcr[:, :, channel] = ((ch_data - ch_min) / (ch_max - ch_min + eps)) * 255
+
+    # Clip the values to valid 8-bit range and convert back to uint8
+    enhanced_img = np.clip(msrcr, 0, 255).astype(np.uint8)
+
+    # Encode the enhanced image to WebP format
+    _, enhanced_webp = cv2.imencode(".webp", enhanced_img)
+    return enhanced_webp.tobytes()
+
+
 @client.tree.context_menu(name="Enhance Image")
 @app_commands.allowed_installs(guilds=True, users=True)
 @app_commands.allowed_contexts(guilds=True, dms=True, private_channels=True)
@@ -350,7 +415,10 @@ async def enhance_image_command(interaction: discord.Interaction, message: disco
         enhanced_image3: bytes = enhance_image3(image_bytes)
         file3 = discord.File(fp=io.BytesIO(enhanced_image3), filename=f"enhanced3-{timestamp}.webp")
 
-        await interaction.followup.send("Enhanced version:", files=[file1, file2, file3])
+        enhanced_image4: bytes = enhance_image4(image_bytes)
+        file4 = discord.File(fp=io.BytesIO(enhanced_image4), filename=f"enhanced4-{timestamp}.webp")
+
+        await interaction.followup.send("Enhanced version:", files=[file1, file2, file3, file4])
 
     except (httpx.HTTPError, openai.OpenAIError) as e:
         logger.exception("Failed to enhance image")